5.3.2 余弦函数的图象和性质

【教学目标】

- 1. 理解余弦函数的图象和性质,会用"五点法"画出余弦函数的简图.
- 2. 进一步领会利用数形结合研究函数的方法,提升逻辑推理的核心素养.

【教学重点】

余弦函数的图象和性质.

【教学难点】

余弦曲线的得出.

【教学方法】

本节课主要采用观察分析与讲练结合的教学方法. 教师先引导学生由诱导公式得出余弦函数与正弦函数图象的关系,得到余弦曲线,并总结出作余弦函数图象的"五点法". 然后结合余弦线或余弦曲线,得出余弦函数的性质. 通过例题,进一步巩固余弦函数的图象和性质.

【教学过程】

教学 环节	教学内容	师生互动	设计意图
导入	复习诱导公式以及特殊角的余弦函数值.	教师提问,学生作答.	为得出余 弦函数的图 象做准备.
新课	余弦函数 $y = \cos x$, $x \in \mathbb{R}$. 1. 余弦函数的图象 对于函数 $y = \cos x$, 由诱导公式 $\cos x = \sin\left(x + \frac{\pi}{2}\right)$ (*) 得 $y = \cos x = \sin\left(x + \frac{\pi}{2}\right)$, $x \in \mathbb{R}$. 而函数 $y = \sin\left(x + \frac{\pi}{2}\right)$, $x \in \mathbb{R}$. 的图象可以通过正弦函数	教师带领学生回顾诱导公式 $\cos x = \sin\left(x + \frac{\pi}{2}\right)$, 然后提问: 余弦函数与正弦函数联系密切,能否在正弦函数的研究基础上,探讨余弦函数的图象和性质? 学生小组讨论,并尝试回答.	

教学	教学内容	师生互动	设计意图
环节	教子內 苷		区 月 息 国
	$y = \sin x$, $x \in \mathbf{R}$	教师引导学生总结余弦函	
	的图象向左平移 $\frac{\pi}{2}$ 得到. 于是,将正	数与正弦函数图象之间的联系.	
	弦函数的图象向左平移 π/2 就得到余弦		
	函数的图象.		
	另外,根据余弦函数的图象,我们	教师提示:观察 $y = \cos x$,	教师用问
	可以发现 $(0, 1), \left(\frac{\pi}{2}, 0\right), (\pi, -1),$	$x \in [0, 2\pi]$ 的图象,最高点是哪个? 最低点是哪个?	题引导学生 观察图象,
	$\left(\frac{3\pi}{2}, 0\right), (2\pi, 1)$ 这五个点是作出	图象与 x 轴有几个交点?	对余弦函数
	余弦函数简图的关键点,又因为角	分别是什么? 学生观察、作答.	的图象形成 直观认知.
	$x+k \cdot 2\pi$ 与角 x 的余弦值相等,于	李王观宗、11·台· 数师指出:在精确度要求	且观风州.
	是得到[0,2π]上余弦函数的图象后,	不高的情况下, "五点法"	
新	$ Ax $ 轴向左、右分别平移 $ 2\pi $, $ 4\pi $, $ $,	是常用的画余弦函数图象的	
课	就可得到 $y = \cos x$, $x \in \mathbb{R}$ 的图象. 余弦函数的图象称为余弦曲线.	方法.	
	2. 余弦函数的性质		
	由单位圆中的余弦线或余弦函数的		每个性质
	图象,可得余弦函数的性质:		都先用观察余
	(1) 值域: [-1, 1].	教师引导学生观察:在	弦函数图象的
		[0,2π]上,图象的最高	方法得出,这
	当 $x = (2k+1)\pi$, $k \in \mathbf{Z}$ 时, $y_{min} =$	点、最低点的坐标分别是什	具有一定的难
	-1.	么? 在定义域 R 上呢?	度, 所以教师
		学生小组讨论,得出余弦	应注意用问题
		函数的值域.	引导学生来观
	(2) 周期性	教师引导学生理解:因为	察余弦函数
	余弦函数是一个周期函数, 2kπ	$\cos(x+k \cdot 2\pi) = \cos x (k \in$	的图象,使
	$(k \in \mathbf{Z} \perp k \neq 0)$ 都是它的周期, 2π	\mathbf{Z}),所以余弦函数 $y = \cos x$	学生在观察
	是其最小正周期.	在 $x \in [-2\pi, 0], [2\pi, 4\pi],$	时有的放矢.

教学		师 化 万 元	沿计辛因
环节	│	师生互动	设计意图
		[4π, 6π], ··· 时的图象与	以研究正
		$x \in [0, 2\pi]$ 的形状完全一	弦函数的思
		样,只是位置不同.	路,探讨余
		学生小组讨论,得出余弦	弦函数的相
		函数的周期性.	应性质.
	(3) 奇偶性	教师引导学生观察图象发	
	由公式 $\cos(-x) = \cos x$ 可知, 余	现:对任意角α,角α和角	
	弦函数 $y = \cos x$, $x \in \mathbf{R}$ 是偶函数,	$-\alpha$ 的余弦值是相等的.	
	它的图象关于 y 轴对称.		
	(4) 单调性	教师提问:余弦函数图象	
	余弦函数在闭区间 $[(2k-1)\pi,$	的升降情况是怎样的?	
	$2k\pi$] $(k \in \mathbf{Z})$ 上是增函数;在闭区	学生回答:余弦函数在	
	间 $[2k\pi, (2k+1)\pi](k \in \mathbf{Z})$ 上是	$[(2k-1) \ \pi, \ 2k\pi] \ (k \in \mathbf{Z})$	
新	减函数.	上,图象自左向右是上升	
课		的,在 $[2k\pi, (2k+1)\pi]$	
		$(k \in \mathbf{Z})$ 上,图象自左向右	
		是下降的.	
	例1 求下列函数的最大值、最小	教师引导学生结合余弦函	利用两个
	值和周期.	数的图象讲解例 1.	例题,使学
	$(1) y = 5\cos x;$		生深入理解
	(2) $y = -8\cos(-x)$.		余弦函数的
	练习1 本节练习A组第1题.		性质,进一
	例 2 不求值,比较下列各对余弦	教师结合诱导公式和余弦	步掌握数形
	值的大小:	函数的图象,讲解如何比较	结合的思想
	(1) $\cos \frac{5\pi}{4} = \cos \frac{7\pi}{5}$;	函数值的大小,然后再引导	方法.
		学生一起写出解题步骤.	
	$(2) \cos\left(-\frac{23\pi}{5}\right) = \cos\left(-\frac{17\pi}{4}\right).$		
	练习2 本节练习B组第1题.		

教学 环节	教学内容	师生互动	设计意图
小结	 "五点法"作图. 余弦函数的图象. 余弦函数的性质. 	教师带领学生总结本节主 要内容,并归纳典型例题及 解题规律.	利用典型题目,再次强调利用数形结合解题的思想.
作业	本节练习 A 组第 2~3 题、练习 B 组第 2 题.	学生课后完成.	巩固本节内容.